Главная
История:
Началось все с
лягушки
Вольтов столб
Огромная батарея Василия Петрова
Первые гальванические элементы
Первые аккумуляторы
Электрохимический счётчик
Аккумуляторы:
Типы аккумуляторов
Аккумуляторы
Литий-ионные
Аккумуляторы
Литий-полимерные
Аккумуляторы Литиевые
Аккумуляторы
Ni-Cd
Аккумуляторы
Ni-MH
Аккумуляторы Свинцово-Кислотные
Автомобильный аккумулятор
Зарядка автомобильного аккумулятора
Умные аккумуляторы
Зарядные устройства
Способы контроля заряда аккумуляторов
Эффект памяти аккумулятора
Аккумуляторные Батареи
"Батарейки":
Типы "Батареек"
Батарейки солевые и щелочные
Батарейки Литиевые
Резервные источники тока
Альтернативная энергия:
Топливные элементы
Солнечная энергия
Солнечные батареи
Ветрогенератор
Разное:
Источник бесперебойного питания
Ионисторы
Перспективные источники тока
Эксплуатация химических источников тока
Диагностика химических источников тока
Тенденции рынка
Производители
Теория и её развитие:
Начало электрохимии
Открытие электроосмоса и электрофореза
Открытия Фарадея
Появление новых терминов
Электрохимический ряд напряжений металлов
Гальванический элемент в банке
Почему растворы проводят электрический ток
Двойной электрический слой на поверхности
Электрохимическая коррозия
Биоэлектричество
   


У нас можно выбрать любой цвет и фактуру перегородок


Яндекс цитирования

Биоэлектричество

Посредством электрических нервных импульсов (потенциалов действия) в живом организме передается информация от рецепторов к нейронам мозга и от нейронов мозга к мышцам. Организм животных является полностью электрифицированной системой.

Животное электричество известно давно. Разряды электрического угря (происходящие при напряжении до 600 В, с током около 60 А и длительностью порядка миллисекунды) использовались медициной еще в Древнем Риме для лечения головной боли, подагры, эпилепсии. Электрический нервный импульс открыл Луиджи Гальвани. Результаты его электрофизиологических опытов изложены в книге "Трактат о силах электричества при мышечном движении" (1791 г.). Гальвани открыл, что мышечные сокращения конечностей препарированной лягушки могут вызваться электрическим импульсом и что сама живая система является источником электрического импульса. Однако огромная популярность идей Гальвани привела к их профанациям, следы которых остались до нашего времени (гальванизация трупов, гальванизм прикосновений и взглядов и т.п.), что вызывало недоверие к экспериментам Гальвани ученых-физиков.

Размышляя о взаимодействии химических и электрических явлений, Фарадей сказал: "Как ни чудесны законы и явления электричества, которые мы наблюдали в мире неорганического вещества и неживой природы, интерес, который они представляют, вряд ли может сравниться с тем, что вызывает та же сила в соединении с нервной системой и жизнью". И в самом деле, ваша рука двигающая мышку, мышцы вашего глаза направили его на эти строки, другие мышцы изменили кривизну хрусталика, чтобы сфокусировать изображение букв на поверхности сетчатки. Все это произошло по приказу нервных импульсов, генерируемых в нервной клетке. Во многих биологических процессах мы при внимательном рассмотрении обнаружим электрохимические звенья.

В XIX веке утвердилось примитивное представление о распространении электрических токов по нервам, как по металлическим проводам. Однако Гельмгольцем (вторая половина XIX века) было показано, что скорость распространения нервного импульса составляет лишь 1-100 м/с, это значительно меньше, чем скорость распространения электрического импульса по проводам до 3 • 108 м/с. Поэтому к концу XIX века гипотеза электрической природы нервного импульса была отвергнута большинством физиологов. Было сделано предположение о распространении по нервным волокнам химической реакции. На самом деле, как было показано позже, медленное распространение электрического нервного импульса связано с медленной перезарядкой конденсаторов, которые представляют собой клеточные мембраны, через большие сопротивления. Постоянная времени перезарядки мембраны τ = RC велика, так как велики емкость мембраны C и сопротивление R нервного волокна.

То, что нервный импульс представляет собой импульс электрического тока, было доказано только к середине XX-го века, в основном в работах английского физиолога А. Ходжкина и его сотрудников. В 1963 году Ходжкину, Хаксли и Иклсу была присуждена Нобелевская премия по медицине "за оперирование нервных клеток".

Еще в середине XIX века была высказана мысль, что поверхность живой клетки имеет общие свойства с электродом в гальванической ячейке. Это оставалось гипотезой до середины 20-х годов XX века, когда стало ясно, что клетки окружены тонкой мембраной весьма сложной структуры. Отдельные части мембраны обладают полупроводниковыми или ионоселективными свойствами - пропускают ионы одного знака или одного элемента (либо натрия, либо калия, например). На такой избирательности основано появление мембранного потенциала, от которого зависит работа информационных и энергопреобразующих систем организма. Мембранный потенциал обеспечивает передачу нервных импульсов, с помощью которых мозг командует работой органов и тканей, а также преобразование химической энергии в механическую. В медицине на исследование электрических полей, созданных биопотенциалами органов и тканей, основаны диагностические методы: электрокардиография, электроэнцефалография, электромиография и другие. Практикуется и лечебное воздействие на ткани и органы внешними электрическими импульсами при электростимуляции. В процессе жизнедеятельности в клетках и тканях могут возникать разности электрических потенциалов:
1) окислительно-восстановительные потенциалы - вследствие переноса электронов от одних молекул к другим;
2) мембранные - вследствие градиента концентрации ионов и переноса ионов через мембрану.
Биопотенциалы, регистрируемые в организме, - это в основном мембранные потенциалы.

Нервная клетка, нейрон, представляет собой звездообразное тело и состоит из тонких отростков - дендритов и аксона - длинного отростка. Конец аксона переходит в тонкие волокна, которые оканчиваются в мышце или синапсах - местах соединения с другой клеткой. Клетка отделена от окружающей ее среды мембраной, играющей особую роль в образовании и передаче нервного импульса. Внутри клетки концентрация ионов калия намного больше, чем вне клетки, а концентрация ионов натрия - меньше. Благодаря этому на стенке клетки образуется двойной электрический слой. Так как мембрана в состоянии покоя хорошо проницаема для ионов калия и менее проницаема для ионов натрия, между внутренней частью клетки и внешней средой возникает разность потенциалов, составляющая 60-100 милливольт, причем внутренняя часть клетки заряжена отрицательно по отношению к околоклеточной жидкости. При раздражении клетки двойной электрический слой частично разряжается и, когда потенциал покоя снижается до 15-20 милливольт, пропускная способность мембраны по отношению к ионам натрия резко возрастает, и они устремляются внутрь клетки. Как только положительная разность потенциалов между внутренней и внешней поверхностями мембраны достигнута, поток ионов натрия иссякает. В тот же миг открываются каналы для ионов калия, и потенциал сдвигается в отрицательную сторону. Это, в свою очередь, уменьшает проводимость по иону натрия, и потенциал в конце концов достигает значения потенциала покоя. Образующийся в клетке сигнал распространяется по аксону за счет проводимости находящегося внутри него электролита. Если аксон имеет особую изоляцию - миелиновую оболочку, то электрический импульс проходит эти участки значительно быстрее, и общая скорость определяется величиной и количеством неизолированных участков.

Сальтаторное распространение потенциала действия по миелинизированному волокну
Сальтаторное распространение потенциала действия по миелинизированному волокну

Возбуждение и сокращение мышцы связано с переносом ионов натрия и калия через мембрану, окружающую мышечное волокно. Природа потенциала действия здесь та же, что и в аксоне, только основную роль играют ионы кальция. После возбуждения концентрация кальция резко увеличивается; это вызывает сокращение миофибрилл, состоящих из параллельно расположенных тонких нитей - белка актина и толстых нитей - белка миозина. По окончании сокращения кальций выводится обратно. Движение белковых нитей по отношению друг к другу, лежащее в основе сокращения мышц, нуждается в энергии. Энергию дает гидролиз универсального горючего, необходимого для функционирования биологических систем, - аденозинтрифосфорной кислоты, сокращенно АТФ. Синтезируется АТФ благодаря присутствию на внутренних поверхностях мембраны ферментов, осуществляющих реакцию окисления питательных веществ. Окисление порождает в мембране скачок потенциала. Постепенное сгорание питательных веществ можно уподобить электрохимической реакции, протекающей в топливном элементе. Коэффициент полезного действия энергетических превращений в клетках может достигать 80 процентов.

В случаи использования содержимого сайта, необходимо ставить активные ссылки на данный сайт видимые посетителями и поисковыми роботами.

Литература

 














Copyright © 2007-2009 PowerInfo.ru