ВетрогенераторЕще в Древнем Египте за три с половиной тысячи лет до нашей эры применялись ветровые двигатели для подъема воды и размола зерна. За пятьдесят с лишним веков ветряные мельницы почти не изменили свой облик. Например, в Англии имеется мельница, построенная в середине XVII в. Несмотря на свой преклонный возраст, она исправно трудится и по сей день. В России до революции насчитывалось приблизительно 250 тыс. ветряных мельниц, общая мощность которых составляла около 1,5 млн. кВт. На них размалывалось до 3 млрд. пудов зерна в год.
Рис.1. Персидская ветряная мельница
Рис.2. Греческая ветряная мельница Появлением ветряных мельниц, была облегчена одна из самых тяжелых крестьянских работ - вращение тяжелых каменных жерновов, перетирающих зерно в муку. Теперь это делал ветер, крутя крылья мельницы. Одна из первых ветряных мельниц была найдена в Персии - в ней крылья были насажены на ту же ось, что и жернова. Всем была хороша персидская мельница, но вот беда - она могла работать лишь при сильном устойчивом ветре. Когда его порывы стихали, вращать жернова приходилось по старинке - с помощью быков, а то и рабов. И вот, приблизительно шестьсот лет назад, началось строительство мельниц башенного типа с огромными крыльями, расположенными горизонтально к поверхности земли. Одна из первых таких мельниц появилась в Голландии, издавна славившейся изобретательными мастерами. В 1745 году некий Эдмунд Ли осчастливил мельников изобретением нового типа крыльев - деревянных каркасов, обтянутых материей. Выдумка оказалась настолько удачной, что применяется в ветряных мельницах и сейчас.
Рис.3. Ветряная мельница Эдмунда Ли Ветряные мельницы оказались прекрасными источниками даровой энергии. Неудивительно, что со временем их стали использовать не только для размола зерна. Ветряки вращали дисковые пилы на больших лесопилках, поднимали грузы на большие высоты, использовались для подъема воды. Наряду с водяными мельницами они оставались, практически, самыми мощными машинами прошлого. В той же Голландии, например, где ветряков было больше всего, они успешно работали до середины нашего века. Часть их действует и в настоящее время. Что интересно, мельницы в средневековье вызывали у некоторых суеверный страх - настолько непривычными были даже простейшие механические приспособления. Мельникам приписывали общение с нечистой силой. Время шло, и люди все чаще задумывались о ветре как о источнике бесплатной энергии. Наступил такой этап развития технологии, когда стали строить электрогенераторы. И в Дании в 1890 году построили первый ветрогенератор для производства электричества. Такие ветрогенераторы устанавливались в труднодоступных местах, куда было неудобно или невыгодно передавать ток с обычных электростанций. В конце концов, ветровые турбины стали давать четверть всей нужной датской промышленности энергии. Между 1920 и 1930 годами ветровые генераторы стали появляться в Австралии и США. В 1937 году в Крыму была построена крупнейшая в мире, как говорили тогда, ветроэлектрическая станция. Она действительно была внушительных размеров, но ток, который ветрогенератор давал в электрическую сеть Севастополя, мощностью своей не превышал 100 кВт.
Рис.4. Ветрогенератор в Калифорнии
Типы ветрогенераторовРазработано большое количество ветрогенераторов. В зависимости от ориентации оси вращения по отношению к направлению потока ветрогенераторы могут быть классифицированы следующим образом (рисунок 5-7):
• с горизонтальной осью вращения, параллельной направлению ветрового потока; • с горизонтальной осью вращения, перпендикулярной направлению ветра (подобные водяному колесу); • с вертикальной осью вращения, перпендикулярной направлению ветрового потока.
Рис.5. Ветрогенераторы с горизонтальной осью вращения
Рис.6. Ветрогенераторы с вертикальной осью вращения с использованием силы сопротивления и подъемной силы
Рис.7. Ветрогенераторы других типов Разработаны также устройства для преобразования энергии ветра в электроэнергию без применения движущихся частей. К ним относится, например, устройство, в котором для выработки электрической энергии на основе термоэлектрического эффекта Томсона применяется процесс охлаждения в ветровом потоке.
Ветрогенераторы с горизонтальной осью вращенияВетрогенераторы с горизонтальной осью вращения могут использовать для преобразования энергии ветра подъемную силу или силу сопротивления. Устройства, использующие подъемную силу, предпочтительнее, поскольку они могут развить в несколько раз большую силу, чем устройства с непосредственным действием силы сопротивления. Последние, кроме того, не могут перемещаться со скоростью, превышающей скорость ветра. Вследствие этого лопасти, на которые действует подъемная сила (ветроколеса), могут быть более быстроходными (быстроходность - отношение окружной скорости элемента поверхности к скорости ветра) и иметь лучшее соотношение мощности и массы при меньшей стоимости единицы установленной мощности.Ветроколесо может быть выполнено с различным количеством лопастей; от однолопастных ветрогенераторов с контргрузами до многолопастных (с числом лопастей до 50 и более). Ветроколеса с горизонтальной осью вращения выполняют иногда фиксированными по направлению, т.е. они не могут вращаться относительно вертикальной оси, перпендикулярной направлению ветра. Такой тип ветрогенераторов используется лишь при наличии одного, господствующего направления ветра. В большинстве же случаев система, на которой укреплено ветроколесо (так называемая головка), выполняется поворотной, ориентирующейся по направлению ветра. У малых ветрогенераторов как правило применяются для этой цели хвостовые оперения, у больших - ориентацией управляет электроника. Для ограничения частоты вращения ветроколеса при большой скорости ветра используется ряд методов, в том числе установка лопастей во флюгерное положение, использование клапанов, установленных на лопастях или вращающихся вместе с ними, а также устройства для вывода ветроколеса из-под ветра с помощью бокового плана, расположенного параллельно плоскости вращения колеса. Лопасти могут быть непосредственно закреплены на валу генератора, или же вращающий момент может передаваться от его обода через вторичный вал к генератору, или другой рабочей машине. Из рисунка 8 видно, как установленная мощность Руст, развиваемая ветроколесом с горизонтальной осью вращения, зависит от его размеров.
Рис.8. Мощности ветрогенераторов различных размеров при скорости ветра 7,6 м/с Перпендикулярное направление действия ветра на установки с горизонтальной осью вращения оказалось малоэффективным, так как также требует использования систем ориентации и сравнительно сложных методов съема мощности, что ведет к потере их эффективности. Они не имеют преимуществ по сравнению с другими типами ветродвигателей с горизонтальной и вертикальной осью вращения.
Ветрогенераторы с вертикальной осью вращенияТакие роторы имеют важные преимущества перед ветрогенераторами с горизонтальным расположением оси. Для них отпадает необходимость в устройствах для ориентации на ветер, упрощается конструкция и уменьшаются гироскопические нагрузки, вызывающие дополнительные напряжения в лопастях, системе передач и прочих элементах установок с горизонтальной осью вращения.К таким установкам относятся устройства с пластинами, чашеобразными или турбинными элементами, а также роторами Савониуса с лопастями S-образной формы, на которые действует также и подъемная сила. Устройства такого типа обладают большим начальным моментом, однако меньшими быстроходностью и мощностью по сравнению с обычным ротором. В 1920 г. во Франции Дарье предложил новый тип ротора, интенсивной разработкой которого начали заниматься с 1970 г. Сейчас ветрогенератор Дарье может рассматриваться в качестве основного конкурента ветрогенераторов крыльчатого типа. Ротор Дарье относится к ветрогенераторам, использующим подъемную силу, которая появляется на выгнутых лопастях, имеющих в поперечном сечении профиль крыла. Ротор имеет сравнительно небольшой начальный момент, и большую быстроходность, в силу этого - относительно большую удельную мощность, отнесенную к его массе или стоимости. Такие роторы имеют различную форму (Φ-, Δ-, Υ- и ромб-образную) с одной, двумя или большим числом лопастей. Крылья пропеллера должны быть легкими и в то же время достаточно прочными. Они делаются из дерева, стали или искусственных материалов - таких как фиберглас. Современные ветрогенераторы конечно, более производительны чем ветряки. Количество вырабатываемого ими электричества зависит от силы ветра и площади лопастей пропеллеров. Например, увеличивая вдвое площадь лопастей, можно получить вчетверо больше электричества. Малые и средние ветровые турбины как правило снабжают электричеством острова или небольшие отдаленные поселения. В США, например, ветрогенератор на острове Каттиханк Айлэнд, расположенном неподалеку от побережья штата Массачусетс, вырабатывает достаточно энергии для снабжения двухсот человек - всего населения острова. В нашей стране ветрогенераторы применяются, в основном, на севере - на Кольском полуострове, в Якутии и даже на антарктических научных станциях. Сегодня в США, Великобритании, Дании и Канаде производятся ветровые турбины мощностью 1 МВт электроэнергии (этого хватает, чтобы мгновенно вскипятить 500 чайников). Самые большие ветрогенераторы в мире - английская LS-1 на острове Оркни и американская MOD5-B на Гавайских островах. Лопасти английской турбины имеют размах 60 метров, она производит приблизительно 3 МВт электроэнергии. Американская еще больше: размах лопастей 96 метров. Однако вряд ли ветровая энергетика будет развиваться по пути гигантизма. Скорее, будущее принадлежит средним турбинам, более удобным в производстве и эксплуатации. Как бы ни были велики и мощны современные ветрогенераторы, они пока не могут полностью обеспечить потребности крупных городов. Небольшие ветровые электростанции успешно действуют во многих странах мира. В США, например, где множество ферм и малых городов расположено в труднодоступной местности, всячески поощряется строительство ветрогенератор в 1,5 киловатта. На одном из Северо-Фризских островов в Германии уже много лет работает установка для опреснения морской воды, а на острове Пельворм даже создан полигон для испытаний разных моделей ветроустановок. В нашей стране ветрогенераторы малой мощности успешно применяются в южных животноводческих хозяйствах для механизации подъема воды. Практика показала, что использование их обходится в 4 раза дешевле, чем использование дизельных двигателей, и в 10 раз дешевле подвоза воды автомобилями. Непостоянство силы ветра требует надежной аккумуляции (сохранения) энергии на периоды затишья. Однако существующие аккумуляторы электроэнергии очень дороги и могут работать с хорошей отдачей лишь с малыми ветрогенераторами. Вследствие этого энергию ветра лучше аккумулировать в самом продукте, который она производит, - в смолотой муке, измельченных кормах, воде, наполнившей водонапорную башню. Все это повышает ценность применения ветровой энергии именно в сельском хозяйстве. Одно из достоинств ветроусгановок заключается в том, что они действуют как бы в унисон с нашими потребностями. В большинстве регионов земного шара наиболее сильные ветра дуют осенью и в начале зимы - как роз тогда, когда человек больше всего нуждается в свете и тепле. И наоборот, времена затишья - в основном летом - совпадают с периодами сокращения потребления энергии (мы говорим, разумеется, о бытовом потреблении). Но это и другие достоинство выглядят бледновато по сравнению с основным недостатком: чтобы увеличить мощность ветроустановки, надо наращивать размер лопастей, то есть, утяжелять конструкцию. Однако тогда для работы ветрогенератора потребуется еще большая скорость ветра, а значит, сузятся районы применения установки. Заколдованный круг.
Ветрогенераторы и окружающая средаСегодня, когда экологические проблемы постепенно становятся одной из главных забот человечества, использование разных источников энергии рассматривается не только с точки зрения их мощности и экономичности, но и влияния на окружающую среду.На первый взгляд ветровая энергия абсолютно чиста экологически и не наносит ущерба природе и людям. Но это не совсем так. Мощные ветровые электростанции с сотнями и тысячами ветровых турбин приносят немало проблем: они производят невообразимый шум, могут служить помехой для радио- и телетрансляций. Кроме того, огромные вышки нередко препятствуют миграции птиц. Разумеется, по сравнению с тем огромным ущербом природе, который наносят тепловые электростанции, вред от ветрогенераторов почти незаметен, однако если мы хотим в будущем иметь абсолютно "чистую" энергетику, проблемы влияния ветроустановок на окружающую среду надо решать уже сейчас. Одним из таких решений - и наиболее перспективным - является установка ветрогенераторов в открытом море, на большом удалении от берегов. Это повысит не только безопасность, но и экономичность, так как на просторах Мирового океана ветры дуют с особой силой. Разумеется, установка ветрогенераторов в открытом море требует больших затрат, однако экологическая чистота стоит денег, затраченных на нее. Первая ветряная электростанция в открытом море уже действует. Это установка Эбельтофф в Дании. 16 ее турбин производят 55 кВт электроэнергии - вполне хватает для полного снабжения поселка из 600 домов. Специалисты подсчитали, что только Западная Европа, береговая линия которой протянулась более чем на 20000 километров, в состоянии получать около триллиона киловатт-часов электроэнергии в год, если воздвигнуть ветрогенераторы вблизи от побережья. А возможности нашей страны в этом плане еще выше. На сегодняшний день технология строительства платформ для ветрогенераторов в открытом море отработана (большую роль здесь сыграл опыт строительства морских скважин для добычи нефти) и уже применяется. Как уже опмечалось, главной проблемой применения ветровой энергии является непостоянство ветра. Имеется несколько способов аккумулировать энергию на случай безветренных дней. Простейший из них - создать систему двух резервуаров, один из которых залегает ниже другого. В ветреные дни производимое электричество можно использовать для закачки воды из нижнего резервуара в верхний. А когда ветрогенератор бездействует, достаточно открыть перемычку - и вода устремится из верхнего резервуара в нижний, вращая по пути турбину, которая будет давать электроэнергию. Еще один способ аккумулирования - использование ветровой энергии для электролиза воды - получения водорода и кислорода из воды. Водород - идеальное топливо, которое может заменить любой тип горючего. Теплота его сгорания втрое выше, чем у бензина. Если в ветреные дни создать достаточный запас водорода, его можно транспортировать в любое место по газопроводам, а затем использовать в топливных элементах. Ученые подсчитали, что общий ветроэнергетический потенциал земли приблизительно в 30 раз превосходит годовое потребление электричества во всем мире. Разумеется, весь этот запас энергии использовать не удастся. Для нормальной роботы ветроустсновок скорость воздушных потоков не должна в среднем за год падать меньше 4-5 м/с, и в то же время не должна превышать 50 м/с. Впрочем, максимальная скорость ветра может быть и выше. Американские инженеры создали генератор с вертикальными роторами, которые вращаются наподобие карусели. По своей эффективности он превосходит лопастные генераторы почти втрое и способен выдерживать даже ураганные ветры. Видимо, с развитием технологии появятся и более совершенные конструкции. Скорее всего, технология не пойдет по пути повышения размеров ветроустановок. Будущее принадлежит ветрогенераторам мощностью от 5 до 100 киловатт, которые будут обеспечивать нужды сельского хозяйства и небольших поселений. Впрочем, имеется возможность применения и более мощных (до 5 мегаватт) установок, которые будут вырабатывать электроэнергию в составе уже существующих энергетических систем. Кроме того, ветровая энергия может быть использована для производство удобрений, для получения сжатого воздуха, который будет направляться в водоемы для их аэрации - повышения содержания кислорода, необходимого для его обитателей. Разные отросли промышленности все активнее делают заявки на ветровую энергию.
P.S. Под лучами Солнца от нагретой поверхности Земли нагревается и воздух. Интенсивность его нагрева завсит в основном от состояния и свойств земной поверхности Так например, воздух в пустыне от раскаленного песка получает в 130 раз больше тепла, чем от морской поверхности на той же широте. Нагретый воздух уменьшает свою плотность - меняется атмосферное давление, при повышении температуры оно падает, при понижении - наоборот. Массы воздуха с большим давлением Двигаются туда, где давление ниже, появляется ветер. На широте экватора вследствие сильного нагрева поверхности Земли образуется устойчивая зона пониженного давления. В нее стекаются воздушные массы с севера и юга - создаются постоянные ветры одного преимущественного направления - пассаты. Под действием вращения Земли они немного отклоняются, в Северном полушарии вправо по ходу воздушных масс, в Южном - влево. На высоте 5-7 км дуют ветры обратного направления - антипассаты. К северу и югу от экватора есть довольно узкая зона устойчивого затишья. Приблизительно на широте 30 градусов по обе стороны от экватора наблюдаются вторые зоны затишья, куда притекают и опускаются холодные потоки с экватора, прошедшие на высоте нескольких километров, - антипассаты. Появляется зона высокого давления, здесь зарождаются пассаты. Из этой же области дуют ветры по направлению к полюсам, так называемые преобладающие западные. По сравнению с пассатами они существенно более изменчивы. Это полоса между 30 и 60° к северу и югу издавна имеет худую славу у моряков и прозвана ревущими сороковыми. Район Бермудских островов на широте 30 , находящийся в зоне затишья, иногда называется конскими широтами. Это странное и немного мрачное название сохранилось со времен парусного флота. Многие корабли того времени перевозили из Европы в Вест-Индию лошадей. Попадая в зону безветрия, суда лишались возможности двигаться, обвисали паруса, таяли запасы пресной воды и продовольствия. Прежде всего при этом погибали лошади. Выброшенные за борт, их трупы еще долго носились по волнам. На полюсах вследствие сильного охлаждения есть еще две области высокого давления, из которых к экватору дуют устойчивые полярные восточные ветры. Под действием солнечных лучей суша нагревается и охлаждается быстрее, чем вода, вследствие этого в различное время года на побережьях морей и океанов образуются сезонные ветры, дующие на берег или с берега, - муссоны. Итак, оказывается, ветры - явление не такое уж стихийное, как это может показаться с первого взгляда. На их постоянство можно рассчитывать, их энергию можно использовать, не боясь, что в один прекрасный, а точнее, совсем не прекрасный момент они исчезнут вовсе. На земном шаре имеются огромные пространства, над которыми дуют ветры с постоянным преимущественным направлением и примерно одинаковой силой. Наша страна вследствие своего географического положения в этом плане находится в выгодных условиях. Она обладает неисчерпаемыми ресурсами энергии ветра. Имеются огромные области в России, где применять энергию ветра можно с максимальной эффективностью. Применять. Например, побережье Северного Ледовитого океана от Кольского полуострова до Чукотки, севернее приблизительно шестьдесят седьмой параллели, и Камчатка. Длительность действия ветра в этих районах приблизительно 300-320 суток в году. Какие же препятствия стоят на пути широкого использования ветра? Их в основном два: непостоянство его направления и силы и необходимость аккумулирования энергии на случай отсутствия ветра или малой его мощности. Прежде всего, видимо, надо рассматривать ветроэнергетические установки как один из путей получения дополнительной энергии, позволяющей сократить расход органического топлива.
В случаи использования содержимого сайта, необходимо ставить активные ссылки на данный сайт видимые посетителями и поисковыми роботами.
|
|