Главная
История:
Началось все с
лягушки
Вольтов столб
Огромная батарея Василия Петрова
Первые гальванические элементы
Первые аккумуляторы
Электрохимический счётчик
Аккумуляторы:
Типы аккумуляторов
Аккумуляторы
Литий-ионные
Аккумуляторы
Литий-полимерные
Аккумуляторы Литиевые
Аккумуляторы
Ni-Cd
Аккумуляторы
Ni-MH
Аккумуляторы Свинцово-Кислотные
Автомобильный аккумулятор
Зарядка автомобильного аккумулятора
Умные аккумуляторы
Зарядные устройства
Способы контроля заряда аккумуляторов
Эффект памяти аккумулятора
Аккумуляторные Батареи
"Батарейки":
Типы "Батареек"
Батарейки солевые и щелочные
Батарейки Литиевые
Резервные источники тока
Альтернативная энергия:
Топливные элементы
Солнечная энергия
Солнечные батареи
Ветрогенератор
Разное:
Источник бесперебойного питания
Ионисторы
Перспективные источники тока
Эксплуатация химических источников тока
Диагностика химических источников тока
Тенденции рынка
Производители
Теория и её развитие:
Начало электрохимии
Открытие электроосмоса и электрофореза
Открытия Фарадея
Появление новых терминов
Электрохимический ряд напряжений металлов
Гальванический элемент в банке
Почему растворы проводят электрический ток
Двойной электрический слой на поверхности
Электрохимическая коррозия
Биоэлектричество
   




Марганцево-цинковые батарейки

Марганцево-цинковые батарейки выпускаются в двух вариантах: с солевым и щелочным электролитом.

Солевые батарейки

До недавнего времени элементы этой электрохимической системы являлись наиболее распространенными несмотря на то, что появились они одними из первых и сохранились практически в неизмененном виде благодаря своим характеристикам:

для производителя:
- дешевизна и доступность сырья
- простота технологии производства
для покупателя:
- низкая конечная стоимость, определенная низкими затратами производителя;
- удобство использования;
- удовлетворительные для большинства облостей применения электрические параметры.

Именно соотношение цены и качества дало возможность им почти полтора века удерживать пальму первенства. Но все-таки в последнее время многие производители неуклонно сокращают их производство или полностью отказываются от их выпуска, что объясняется повышением требований производителей современного электронного оборудования к электрическим параметрам источников питания.

К числу недостатков солевых батареек относятся:
- резкое падение напряжения в течении разряда;
- значительное снижение отдаваемой емкости при увеличении разрядных токов до значений, необходимых для современных устройств;
- резкое ухудшение характеристик при отрицательных температурах;
- маленький срок хранения (порядка двух лет).

Понятие "номинальная емкость" редко употребляется для характеристики марганцево-цинковых батареек, так как их емкость сильно зависит от режимов и условий эксплуатации.

Основными недостатками этих элементов являются значительная скорость снижения напряжения на всем протяжении разряда и значительное уменьшение отдаваемой емкости при увеличении тока разряда. Конечное разрядное напряжение устанавливают в зависимости от нагрузки в интервале 0,7-1,0 В.

Важна не только величина тока разряда, но и временной график нагрузки. При прерывистом разряде большими и средними токами работоспособность батареек заметно увеличивается по сравнению с непрерывным режимом работы. Однако при малых разрядных токах и многомесячных перерывах в работе емкость их может снижаться в следствии саморазряда.

Элементы работоспособны в интервале температур от -20 до +60 °С. При длительном воздействии высокой температуры увеличивается саморазряд элементов. А при низкой температуре заметно уменьшается отдаваемая емкость. Но при корректировке рецептуры электролита выпускается серия хладостойких батареек, работоспособных в диапазоне температур от -40 до +40 °С.

На работоспособность солевых марганцево-цинковых элементов существенно сказывается время их хранения с момента изготовления. Саморазряд их определяется, главным образом, коррозией цинкового электрода, а также взаимодействием активных масс положительного электрода с загустителями электролита. В зависимости от рецептур активных масс и электролита, конструктивного исполнения и размеров элементов их сохранность колеблется от 1 года до 3 лет. К концу гарантированного срока утрата емкости может составлять 30-40 %.

При использовании в устройствах, у элементов на последней стадии разряда и по его окончании может произойти течь электролита, что связано с повышением объема активной массы положительного электрода и выдавливанием электролита из его пор. Особенно сильно этот эффект проявляется после разряда большими токами или короткого замыкания. В конце разряда в результате медленного разложения диоксида марганца может также выделяться кислород, а в результате коррозии цинка - водород, что тоже способствует увеличению внутреннего объема батарейки.

Электроды и электролит. Активная масса положительного электрода (называющаяся "агломерат") состоит из смеси диоксида марганца с чешуйчатым графитом либо ацетиленовой сажей и электролитом. При этом технология изготовления MnO2 заметно сказывается на электрических характеристиках элементов. Графит и сажа увеличивают электрическую проводимость активной смеси. Их массовая доля составляет 8-20% в зависимости от назначения источника тока. Чем выше разрядные токи, на которые рассчитан марганцево-цинковый элемент, тем выше содержание токопроводящих добавок. Для повышения степени использования окислителя активную массу пропитывают раствором электролита.

Отрицательный электрод изготовляется из коррозионно-стойкого цинка высокой степени чистоты (массовая доля цинка 99,94% и более). Цинк содержит маленькое количество свинца, галлия или кадмия (десятые или сотые доли процента), которые являются ингибиторами коррозии цинка.

Электролитом в элементах этой системы ранее был раствор хлорида аммония (классические элементы Лекланше). Хлорид аммония принимает участие в токообразующих реакциях, обеспечивает ионную проводимость электролита и стабилизирует pH электролита при незначительных токах разряда. Но образование малорастворимых комплексных соединений, выпадающих в объеме катодной массы, приводит, с одной стороны, к росту внутреннего сопротивления элемента, а с другой - к избыточному выведению электролита из области реакции. Поэтому позднее электролит из раствора хлорида аммония был заменен на раствор хлорида цинка, иногда с добавкой хлорида кальция. Такие марганцево-цинковые батарейки могут разряжаться длительное время с относительно высокими плотностями тока и имеют более пологую разрядную кривую. Хлорид цинка ускоряет загустевание электролита, обладает буферными и антигнилостными свойствами. Работоспособность таких элементов при пониженных температурах значительно выше, чем классических. Для снижения температуры замерзания электролита в его состав вводят хлорид кальция. Кроме упомянутых ранее ингибиторов коррозии цинка, иногда дополнительно вводят бихромат калия и сульфат хрома, являющийся дубителем, предотвращающим разжижение электролита при увеличении температуры.

При использовании хлорида аммония электродные процессы описываются следующим уравнением токообразующей реакции:

2MnO2 + 2NH4Cl + Zn → ZnCl2· 2NH3 + H2O + Mn2O3

При использовании хлорида цинка уравнение имеет вид:

8MnO2 + 4Zn + 2ZnCl2 + 9H2O → 8MnOOH + ZnCl2 · 4ZnO · 5H2O

Энергетические показатели элементов с хлоридно-цинковым электролитом существенно выше: при средних и повышенных токах нагрузки они могут обеспечить в 1,5-2 раза большую длительность работы. Работоспособность их при пониженных температурах тоже выше.

Конструкция солевых батареек

В солевых элементах корпус, сделанный из цинка, является отрицательным электродом 1. Положительный электрод 2 представляет из себя брикет из спрессованной активной массы, увлажненный электролитом, в центре которой расположен токоотвод 3 - угольный стержень, пропитанный составами на основе парафина для снижения потери воды из электролита. Сверху токоотвод обжат металлическим колпачком. Электролит в сепараторе 4 - загущенный. В элементах есть газовая камера 5, в которую поступают газы, выделяющиеся при разряде и саморазряде. Сверху размещают прокладку 6. Для уменьшения вероятности течи в результате питтинговой коррозии тонкостенного цинкового стакана элемент помещают в футляр 7, картонный или полимерный, иногда дополнительно применяется футляр из белой жести. В этом случае дно и верх элемента также закрывают белой жестью.

Конструкция солевой батарейки
Конструкция солевой батарейки

Щелочные (Алкалиновые) батарейки

Щелочные марганцево-цинковые батарейки начали производить в середине 20 века. Одной из первых их промышленный выпуск освоила компания Duracell (США).

Окислителем является диоксид марганца, а восстановителем - цинк в виде порошка, что позволяет значительно развить поверхность и тем самым уменьшить вероятность пассивации поверхности цинка при больших токах разряда.

Для замедления коррозии раньше использовалось амальгамирование как объемное, так и поверхностное. После введения ограничений на применение ртути, применяются цинковые порошки высокой степени чистоты, легированные определенными металлами, а также органические ингибиторы коррозии.

Компоненты щелочных батареек. Активным материалом анода является порошкообразный цинк высокой степени чистоты. Для уменьшения скорости коррозии цинк может быть легирован небольшими добавками свинца, индия, висмута и алюминия. Скорость коррозии цинка существенно возрастает при увеличении содержания в нем железа, поэтому очень важно снижать долю железа до минимального уровня. Средний диаметр частиц цинка - в границах 155-255 мкм, удельная поверхность составляет около 0,02 м2/г.

Активная масса анода содержит цинк (объемная доля 18-33 %), загуститель (гель-компонент), раствор электролита, оксид цинка и ингибитор коррозии (см. таблицу). В качестве гель-компонента используют производные целлюлозы, полиакрилаты, поливиниловый спирт и другие полимеры.

Типичный состав анодной массы щелочной батарейки
Компонент Содержание (масс. %)
Порошок цинка 55-75
Раствор KOH (32-55%) 25-45
Оксид цинка до 2
Загуститель 0,4-2
Ингибитор коррозии до 0,05

Активная масса катода содержит кроме диоксида марганца, графит либо ацетиленовую сажу, раствор KOH и связующее (см. таблицу). Содержание компонентов в активной массе катода у различных изготовителей может колебаться в широком диапазоне. Например, содержание углеродистых материалов может достигать 15 % и выше.

Типичный состав катодной массы щелочной батарейки
Компонент Содержание (масс. %)
Диоксид марганца 79-85
Углерод 7-10
Раствор KOH (35-55%) 7-10
Связующее 0-1

В качестве электролита применяются концентрированные растворы KOH (иногда NaOH) с добавками ZnO, а иногда и LiOH. Электролит загущен природными или синтетическими полимерными соединениями, содержащими OH-группы.

В начале процесса разряда происходит окисление цинка с образованием цинката ZnO22- (или Zn(OH)42-). После насыщения раствора электролита цинкатом, начинается вторичный процесс:

Zn + 2OH- → Zn(OH)2 + 2е-

с последующим разложением гидроксида цинка на ZnO и Н2О. На второй стадии в элементе наступает баланс выделения и поглощения ионов ОН- и щелочь не расходуется, благодаря этому для его работы хватает малого количества электролита, который заполняет только поры электродов и межэлектродное пространство.

Порошковый цинковый электрод обеспечивает существенное увеличение коэффициента использования активного материала в сравнении с солевыми элементами. При беспрерывном разряде средними и повышенными токами щелочные элементы обеспечивают емкость большую (до 7-10 раз), чем солевые элементы тех же габаритов. Щелочные элементы лучше функционируют и при низких температурах: при -20 °С отдают такую же емкость, как солевые в режиме беспрерывного разряда при комнатной температуре. Скорость саморазряда щелочных марганцево-цинковых элементов меньше: после 1 года хранения при +20 °С или 3 месяцев при +50 °С потери емкости составляют примерно 10 % начальной емкости.

Гарантийный срок хранения щелочных элементов составляет 5-7 лет, иногда он достигает 10 лет.

Итак, при одинаковых размерах солевых и щелочных батареек продолжительность работы последних при одинаковых малых токах в 1,5-2 раза больше, а при больших - в 4-10 раз больше.

Разрядные кривые марганцево-цинкового элемента при разных токах разряда: а-солевого, б-щелочного
Разрядные кривые марганцево-цинкового элемента при разных токах разряда: а-солевого, б-щелочного

Конструкция щелочных батареек

Размеры цилиндрических элементов совпадают с размерами элементов марганцево-цинковой системы с солевым электролитом. В то же время, устройство щелочных батареек отличается от устройства солевых аналогов: щелочные элементы имеют как бы вывернутую конструкцию (см. рисунок). В элементах с щелочным электролитом цинк всегда находится в виде порошка, поэтому вместо цинкового стаканчика применяют стальной никелированный цилиндрический корпус, служащий токоотводом положительного электрода. Активная масса положительного электрода подпрессовывается к внутренней стенке корпуса. В щелочном элементе можно расположить больше активной массы положительного электрода, чем в солевом элементе того же объема. Например, в щелочной элемент типоразмера D можно поместить 37-41 г диоксида марганца, тогда как в солевой элемент помещается только 22-28 г. Во внутреннюю полость, образованную активной массой положительного электрода, вставляется сепаратор, пропитанный электролитом. В качестве сепарационных материалов применяются гидратцеллюлозные пленки (целлофан) либо нетканые полимерные материалы. По оси элемента размещен латунный токоотвод отрицательного электрода, а все пространство между этим токоотводом и сепаратором плотно забивается анодной пастой, состоящей из цинкового порошка, пропитанного загущенным электролитом. Часто уже при изготовлении элементов в качестве электролита применяется щелочь, предварительно насыщенная цинкатами, что позволяет избежать расходования щелочи в начале эксплуатации. Кроме того, присутствие цинкатов в электролите замедляет скорость коррозии цинка.

Устройство щелочной батарейки
Устройство щелочной батарейки:
1-катод, 2-сепаратор с электролитом, 3-корпус, 4-футляр, 5-токоотвод, 6-анод, 7-дно, 8-прокладка

Из-за более плотной активной массы и применения стального корпуса щелочные батарейки при тех же размерах обычно тяжелее солевых на 25-50 %.

Емкость и энергия щелочных батареек. Как и у всех химических источников тока, емкость батареек с щелочным электролитом уменьшается при увеличении тока разряда и снижении температуры, но менее резко, чем у элементов с солевым электролитом. Удельная емкость элементов с щелочным электролитом при разряде малыми токами приблизительно в 1,5 раза превышает удельную емкость элементов с солевым электролитом. При разряде большими токами это различие достигает 4-10-кратного.

Емкость источника тока при прерывистом разряде средними и большими нормированными токами выше, чем при непрерывном разряде. Но при прерывистом разряде малыми токами емкость источника тока меньше емкости при непрерывном разряде вследствие саморазряда.

Во всем мире в производстве наблюдается стабильная тенденция по росту доли более энергоемких щелочных марганцево-цинковых элементов.

Следует еще раз особо подчеркнуть, что для уменьшения саморазряда элементов в настоящее время используются не ртуть и кадмий, а другие ингибиторы коррозии цинка которые менее токсичны.



В случаи использования содержимого сайта, необходимо ставить активные ссылки на данный сайт видимые посетителями и поисковыми роботами.

Литература

 














Copyright © 2007-2009 PowerInfo.ru