Главная
История:
Началось все с
лягушки
Вольтов столб
Огромная батарея Василия Петрова
Первые гальванические элементы
Первые аккумуляторы
Электрохимический счётчик
Аккумуляторы:
Типы аккумуляторов
Аккумуляторы
Литий-ионные
Аккумуляторы
Литий-полимерные
Аккумуляторы Литиевые
Аккумуляторы
Ni-Cd
Аккумуляторы
Ni-MH
Аккумуляторы Свинцово-Кислотные
Автомобильный аккумулятор
Зарядка автомобильного аккумулятора
Умные аккумуляторы
Зарядные устройства
Способы контроля заряда аккумуляторов
Эффект памяти аккумулятора
Аккумуляторные Батареи
"Батарейки":
Типы "Батареек"
Батарейки солевые и щелочные
Батарейки Литиевые
Резервные источники тока
Альтернативная энергия:
Топливные элементы
Солнечная энергия
Солнечные батареи
Ветрогенератор
Разное:
Источник бесперебойного питания
Ионисторы
Перспективные источники тока
Эксплуатация химических источников тока
Диагностика химических источников тока
Тенденции рынка
Производители
Теория и её развитие:
Начало электрохимии
Открытие электроосмоса и электрофореза
Открытия Фарадея
Появление новых терминов
Электрохимический ряд напряжений металлов
Гальванический элемент в банке
Почему растворы проводят электрический ток
Двойной электрический слой на поверхности
Электрохимическая коррозия
Биоэлектричество
   


Практика подтверждают, что вентиляция в квартире двух последних этажей имеет больше всего проблем.


Яндекс цитирования


офисная мебель краснодар сюда

Литиевые батарейки

Особенности литиевых батареек

Источники тока с более высокими энергетическими характеристиками и расширенным диапазоном эксплуатационных возможностей были разработаны при отказе от водных электролитов. Самые большие успехи были достигнуты при разработке литиевых элементов с органическим и твердым электролитом.

Первые работы по применению лития в качестве анодного материала в источниках тока появились в начале XX века, но реальное развитие они получили в 60-ых годах. Изучались источники тока с твердофазными (MnO2, CuO, I2, CFx, FeS2 и другие) и жидкофазными катодными материалами (SO2 и SOCl2). Основные характеристики литиевых элементов более всего распространенных систем показаны в таблице, ниже описаны их особенности и показаны рабочие характеристики.

Литиевые элементы различных электрохимических систем
Характеристики Li/MnO2 Li/SO2 Li/SOCl2 Li/CFx Li/CuO Li/I2
НРЦ 3,5 3,0 3,67 3,3 1,6 2,8
Рабочее напряжение, В 3,0 2,6-2,9 3,3-3,5 - 1,2-1,5 -
Конечное напряжение, В 2,0 2,2 2,2 2,0 0,9-1,0 2,2
Удельная энергия:
Весовая, Втч/кг
Объемная, Втч/л
 
до 250
 
300-340
 
до 600
 
250
 
300
 
-
500 500-560 до 1100 600 600 до 1000
Диапазон рабочих температур, °С -20 - +55 -60 - +70 -50 - +70 (до 130) -20 - +60 -10 - +70 -10 - +60
Саморазряд, % в год 2-2,5 1-2 1,5-2 1-2 1-2 1

Литиевые батарейки в настоящее время в ряде областей техники успешно конкурируют с более дешевыми элементами с водным электролитом. Их применяют в часах, фотокамерах, калькуляторах, для защиты памяти интегральных схем, в измерительных приборах и медицинском оборудовании, там, где требуется высокая сохранность и постоянство рабочего напряжения в течение многих лет эксплуатации.

Существуют и мощные источники тока, способные к отдаче импульсов большой энергии даже после 10-12 лет хранения.

К герметизации литиевых батареек предъявляются повышенные требования, так как должна быть исключена вероятность не только вытекания электролита, но и попадания внутрь воздуха и паров воды, из-за чего возникает угроза пожара или взрыва элемента. Высокая реактивность лития, воздействие влажности воздуха на состояние электродов и электролита определяют и повышенные сложности при производстве элементов, необходимость проведения технологических действий в герметичных блоках с атмосферой аргона и "сухих" помещениях.

Литиевые элементы, цилиндрические и дисковые, производятся в габаритах элементов традиционных электрохимических систем. Поэтому нужно быть внимательным, чтобы не допускать ошибок случайных замен элементов с рабочим напряжением 1,5 В на литиевые, напряжение которых значительно выше. Многие компании часто стараются уменьшить эту опасность и поставляют элементы с приваренными нестандартными выводами в виде плоских лепестков, аксиальных иглообразных штырьков для впаивания элементов в схему и т.п.

Основные электрохимические системы литиевых элементов

Источники тока на базе системы литий/диоксид марганца (Li/MnO2)
Элементы Li/MnO2 с твердым катодом из диоксида марганца появились на рынке первичных литиевых источников тока одними из первых. В соответствии со стандартом МЭК в обозначении типа элемента Li/MnO2 присутствуют буквы CR..

Реакция для этой системы записывается в виде:

Li + Mn+4O2 → Mn+3O2 (Li+)

т.е. диоксид марганца восстанавливается из четырехвалентного до трехвалентного состояния с помощью лития, который внедряется в кристаллическую решетку конечного оксида. Электролит - перхлорат лития в смешанном органическом растворителе.

Напряжение разомкнутой цепи (НРЦ) элемента Li/MnO2 - 3,5В, номинальное напряжение - 3В, хотя первоначальное напряжение при подключении нагрузки может быть и немного выше. Конечное напряжение - 2В. Рабочий диапазон температур как правило от -20 до +55 °С. Срок хранения - до 10 лет при саморазряде порядка 1% в год (и не более 2-2,5%).

Источники тока на основе системы литий/оксид меди (Li/CuO)
Элементы Li/CuO имеют рабочее напряжение, сопоставимое с напряжением щелочных марганцево-цинковых элементов. Но в них удалось достигнуть в 3 раза большей удельной энергии.

При разряде имеет место реакция:

2Li + CuO → Li2O + Cu

при этом разрядный процесс протекает в несколько этапов:

CuO → Cu2O → Cu

Напряжение разомкнутой цепи (НРЦ) элементов - 2,5В, рабочее напряжение 1,2-1,5В в зависимости от тока разряда. Начального провала напряжения не наблюдается.

Элемент Li/CuO работоспособен в интервале температур от -10 до +70 °С. Срок хранения элементов при 20 °С - до 10 лет. Элементы широкого распространения не получили.

Источники тока на базе системы литий/иод (Li/I2)
Элементы системы Li/I2 отличаются от прочих литиевых элементов тем, что они не содержат жидкого электролита и не требуют применения специального сепаратора.

Работа источника тока Li/I2 основана на реакции:

2Li + I2 → 2LiI
При прямом контакте йодсодержащего катода и лития в результате прямой химической реакции образуется твердый иодид лития LiI, который является электролитом и в то же время играет роль сепаратора, разделяющего два активных материала.

НРЦ элемента - 2,8В. Напряжение его определяется сопротивлением слоя иодида лития, который по мере разряда постепенно накапливается в межэлектродном пространстве и вызывает линейное снижение напряжения до 2,2-2,4В. Когда весь запас йода закончится, напряжение резко падает.

Элементы обеспечивают сохранность в течение 10-15 лет при саморазряде около 10% за весь срок службы. Саморазряд определяется реакцией лития и йода, который диффундирует через слой йодида лития. Потери на саморазряд зависят от толщины слоя LiI и поэтому в наибольшей степени имеют место на начальной фазе работы: все потери на саморазряд проявляются при разряде не более чем на 25-30%.

При работе элементов Li/I2 не образуется газов. Общий объем их постоянен в течение всего периода работы. Они переносят значительные нарушения условий эксплуатации без каких-либо последствий.

Специфичный механизм работы элемента и его характеристики делают его пригодным для выполнения задач, требующих повышенной надежности. Источники тока с емкостью порядка нескольких ампер-часов применяются в устройствах для медицинских применений, прежде всего имплантируемых кардиостимуляторов. Они работоспособны в интервале температур от -10 до +60 °С.

Источники тока на основе системы литий/полифторуглерод
Удельная энергия элемента достигает 250 Втч/кг и 600 Втч/л. Эти элементы дороже, чем элементы Li/MnO2, однако они сохраняют работоспособность при более высокой температуре и поэтому находят применение в первую очередь в устройствах, нагревающихся в течении работы.

Токообразующая реакция имеет вид:

nLi + (CFx)n → nLiFx + nC

В процессе разряда превращения, совершающиеся во фторированном углероде, приводят к росту электропроводности положительного электрода, и условия разряда улучшаются.

НРЦ элемента составляет 3,2-3,3В, рабочее напряжение постоянно на протяжении почти всего разряда в широком интервале температур (от -40 до +85 °С). Конечное напряжение -2В.

Элементы теряют не более 20% Сн, при хранении более 10 лет.

Литий-фторуглеродные элементы были коммерциализированы более 30 лет назад и в настоящее время применяются главным образом в качестве источников питания портативной электронной аппаратуры, особенно такой, которая разогревается в ходе работы. Но при температуре ниже 0 °С и средних и больших токах разряда эти элементы уступают более дешевым элементам системы Li/MnO2.

Элементы Li/CFx обеспечивают гораздо более высокую мощность, чем элементы системы Li/I2, и поэтому успешно используются для их замены в кардиостимуляторах нового поколения, а также в имплантируемых дефибрилляторах.

Источники тока на базе системы литий/дисульфид железа (Li/FeS2)
В последнее время, несмотря на высокую стоимость, востребованными оказались элементы системы Li/FeS2, что определено рядом неоспоримых достоинств.

Реакция, протекающая при их разряде, имеет вид

4Li + FeS2 → 2Li2S + Fe

Удельная энергия этих элементов достигает 300 Втч/кг и 600 Втч/л, сохранность - 15 лет и более. Они работоспособны при температуре -40 °С, что могут обеспечить только литиевые элементы с жидкофазными катодами. Li/FeS2 элементы имеют лучшие характеристики, в особенности при большой потребляемой мощности.

В конструкцию этих источников питания обязательно вводятся элементы защиты для ограничения тока непрерывного потребления (2А для элементов типоразмера АА) и устройство с положительным температурным коэффициентом сопротивления, отсоединяющим нагрузку при достижении температуры 85-95 °С. Кроме того, элементы имеют аварийный клапан для сброса давления газа, которое может появиться при их разогреве до 130-160 °С.

Источники тока на основе системы литий/диоксид серы (Li/SO2)
Литиевые элементы системы литий/диоксид серы с жидкофазным катодным материалом хорошо исследованы и широко распространены. В качестве катода в элементах применяется смесь сажи с графитом и связующим, которая наносится на металлическую основу. Электролит элемента состоит из диоксида серы SO2 (70-75% по объему) с добавками для обеспечения необходимой электропроводности.

Электрохимическая реакция, которая протекает в элементе при подключении нагрузки, имеет вид:

2Li + 2SO2 → Li2S2O4

НРЦ элементов Li/SO2 - 3В. Элементы этой системы обладают большой удельной мощностью и работоспособны в диапазоне температур от -60 до +70 °С. Разрядное напряжение 2,6-2,9В, в зависимости от плотности тока.

К недостаткам Li/SO2 элементов относятся большое внутреннее давление и опасность сильного нагрева при коротких замыканиях. Для предотвращения нежелательных эффектов в корпусе устанавливают специальный предохранитель, который срабатывает при 100 °С и обеспечивает сбрасывание излишнего давления газа.

Из-за повышенного давления элементы производятся чаще всего в цилиндрической конструкции, бобинной и рулонной. В первом случае литиевый анод запрессовывается по периферии, а прессованный угольный катод располагается в центре. При рулонной сборке пакета электродов обеспечиваются более высокие энергетические характеристики. Срок хранения батареек Li/SO2 - до 10 лет. Саморазряд происходит за счет реакции лития с электролитом, скорость его не превышает 1-2 % в год при 20 °С.

Источники тока на базе системы литий/тионилхлорид (Li/SOCl2)
Элементы системы Li/SOCl2 с жидкофазным катодом располагают наилучшими удельными характеристиками среди литиевых первичных источников тока.

Реакция, протекаемая при разряде, имеет вид:

4Li + 2SOCl2 → 4LiCl + SO2 + S

Так как большая часть SO2 растворяется в электролите, давления в элементе не появляется.

НРЦ элементов - 3,67 В, рабочее напряжение 3,3-3,5 В в зависимости от тока разряда. Они работоспособны в интервале температур от -60 до +85 °С, некоторые до +130 °С. Конструкция элементов Li/SOCl2 подобна конструкции элементов Li/SO2, но тионилхлорид значительно агрессивнее других электролитов, вследствие этого обеспечение их пожаро- и взрывобезопасности потребовало больших усилий и от разработчиков, и от технологов.

Срок хранения этих элементов до 10 лет при саморазряде 1,5-2% в год при 20 °С.

При низкой температуре (порядка -50 °С) элементы отдают емкость в несколько раз меньше номинальной. Если после этого они переносятся в теплое помещение, разряд продолжается и может иметь место существенный их разогрев за счет разложения промежуточных продуктов реакции вплоть до взрыва.

Для увеличения безопасности эксплуатации, литиевые элементы могут быть снабжены аварийными клапанами для сброса газа, плавкими предохранителями, тепловыми выключателями.

В случаи использования содержимого сайта, необходимо ставить активные ссылки на данный сайт видимые посетителями и поисковыми роботами.

Литература

 














Copyright © 2007-2009 PowerInfo.ru